DIS-TRAN Steel Blog

DIS-TRAN Steel’s Quality Engineering Practices Ensure Towers Are Built to Last

Posted by DIS-TRAN Steel on Aug 23, 2016 12:57:19 PM

On Dec. 14, 2009, the failure of a broadcast tower in Tulsa, Oklahoma had engineers scratching their heads. The chief engineer said when the guy wire was tested a few months earlier “everything seemed fine.”

Remarkably, 31% of all substation tower failures occur because of the construction crew’s poor judgment or a lack of basic engineering know-how, according to a recent Consolidated Engineering Inc. (CEI) report. Engineering oversights can cause a significant risk to the integrity of a tower and its foundation, which can ultimately lead to collapse.

IMG_4194-954.jpg

DIS-TRAN Steel has built its company on simple values backed by honest customer relationships. Since 1965, customers have put their trust in us to deliver products – from simple substation structures to complex transmission poles – that are made using the best manufacturing process and the highest-quality engineering in the industry.

We offer the kind of security that comes from knowing exactly who is designing and fabricating your structures and how.

Unfortunately, some standards aren’t consistent across the industry. The CEI report found the top five causes of tower failure are caused by construction errors, ice, aircraft, special winds and anchor failure. The Tulsa tower’s failure was attributed to the latter two factors.

A CEI forensic specialist found in every wind induced tower failure he investigated, the tower wouldn’t have passed the current design code. It is important to design, manufacture and erect per current design codes to minimize the risk of poor structure integrity.  Quality issues are not only costly, but dangerous as well.

So how can you ensure you’re working with the right manufacturer?

  • Look for solid investments in the latest equipment and technology
  • Attention to best practices and quality assurance
  • A focus on hiring the most experienced engineers
  • A commitment to top-notch customer service.

So what has DIS-TRAN Steel done?

  1. Doubled its manufacturing capacity and capabilities at its 300,000-square-foot, state-of-the art facility in Pineville, Louisiana
  2. Employ the latest fabricating innovations and rely on real-time scheduling and product tracking to ensure projects never fall behind
  3. Our in-house quality assurance and quality control program ensures every structure is examined by independent quality inspectors
  4. We are certified by the American Institute of Steel Construction (AISC) and American Welding Society (AWS) and adhere to a strict quality standard. All of our welds are performed by certified welders and inspected by certified inspectors.
  5. Our engineering department is highly skilled at combining computer-aided design and drafting with numerical control fabricating systems to create the most efficient structures
  6. Provide Project Managers and Coordinators to be at your beck and call for the outstanding service you have come to expect from DIS-TRAN.

After five decades in business, you can trust that DIS-TRAN Steel is using the most innovative technology available to deliver structures that are both sound and incomparable in quality. No one can afford to skimp on quality manufacturing and engineering when it comes to transmission and substation structures. We pride ourselves on the unrivaled attention to detail, solid communication, and genuine customer service that all point to why we’re the elite steel supplier.

Steel Structure Quote Template

Visit DIS-TRAN Steel to learn more about our unique capabilities, mission, team and more.

Tags: substation structures, transmission poles, Engineering

10 Tips: How to Save Money When Submitting a Bid to a Steel Fabricator

Posted by Brooke Barone on Jun 19, 2014 12:25:00 PM

Every structural steel fabricator is different when it comes down to pricing substation and transmission steel structures. But, there are some commonalities that could help save you money when submitting a Request for Quote (RFQ). How do you do that you might ask?

Well, generally, there’s a rule of thumb to consider: the more information you give the Estimating Department, the better price you’ll receive. If very little information is given, it’s harder for the estimating department/engineers to easily go through and pick out requirements, design the structure and then send the RFQ back in adequate time. And sometimes the price might reflect the assumptions that had to be made. 

Different terms used:

  • Request for Quote (RFQ)
  • Request for Proposal (RFP)
  • Purchase Requisition
  • Inquiry
  • Bid Event / BidQuote / Proposal

DTS_Employee

So, if you’ve asked yourself, “what can I do to save money when submitting a bid,” here are five good starting points.

1. Well-Defined Scope of Work- this could include everything from what the fabricator’s responsibility is, to needing the structures galvanized or weathering, delivery process, how hardware should be shipped, etc.  

2. Technical Specifications- this tells the fabricator how you want the structures built, like what kind of steel to use, etc.

3. Commercial Terms- this is more on the legal side, meaning what type of payment or who to invoice, insurance requirements, warranties, damages, etc.

4. Structure/Electrical Layout- this gives the overall dimensions of a structure such as height and width or phase spacing.

5. Enough Time to Bid- it’s important to keep in mind that fabricators typically have a quote backlog already scheduled out. 

Often, in order to send a bid to a fabricator, customers require the fabricator to be on an approved vendor list in order to quote the project.  The approval process usually involves quality assurance / quality control (QA/QC) audit, industry experience, project references, customer references, commercial term agreement, credit approvals, etc. 

Facts That Could Affect Pricing:

6. Weathering steel generally costs less because unlike galvanized steel, it doesn’t get the galvanized coating. (Typically see weathering steel more with transmission structures.)

7. Usually, the more steel ordered at one time could help give you a better price. In this instance, if you had different structures for one substation, instead of ordering separately, try to coordinate to order all the structures together, which could save money on freight and other expenses.

8. Loads with over-length and over-width sections could get costly because you have to get freight permitting depending on the states along the delivery route. Typically, the price for wider structures is greater than longer structures.

9. Expedited lead times can increase price. Since a production backlog is already in place, fabricators would need to expedite engineering, detailing, rearrange product schedule or may have to include some overtime.

10. Special weld inspection requirements and tests that are beyond typical industry standards could raise the price. If the fabricator needs to pull in a third party to inspect, send material off for testing or bring in an expert, it could increase the price.

These are just a few suggestions, and are not meant to be taken as the rule in every situation when dealing with every fabricator. But it is good to know how your project was priced and what affected it so that there are no hidden surprises or confusion.   

So remember: supply ample information, receive accurate price. 

New Call to action

New Call-to-action

 

Tags: transmission structures, substation structures, structural steel fabricators, structural steel price, rfq request for quote, engineering estimating software, structural steel

10 Ways Knowing About Structural Steel Pricing Will Save You Money

Posted by Brooke Barone on Oct 29, 2013 3:52:00 PM

Every structural steel fabricator is different when it comes down to pricing substation and transmission steel structures. But, there are some commonalities that could help save you money when submitting a Request for Quote (RFQ). How do you do that you might ask?

Well, generally, there’s a rule of thumb to consider: the more information you give the Estimating Department, the better price you’ll receive. If very little information is given, it’s harder for the estimating department/engineers to easily go through and pick out requirements, design the structure and then send the RFQ back in adequate time. And sometimes the price might reflect the assumptions that had to be made. 

Different terms used:

  • Request for Quote (RFQ)
  • Request for Proposal (RFP)
  • Purchase Requisition
  • Inquiry
  • Bid Event / BidQuote / Proposal

So, if you’re asking yourself-“well, what exactly do I need to include when submitting a bid,” here are five good starting points.

1. Well-Defined Scope of Work- this could include everything from what the fabricator’s responsibility is, to needing the structures galvanized or weathering, delivery process, how hardware should be shipped, etc.  

2. Technical Specifications- this tells the fabricator how you want the structures built, like what kind of steel to use, etc.

3. Commercial Terms- this is more on the legal side, meaning what type of payment or who to invoice, insurance requirements, warranties, damages, etc.

4. Structure/Electrical Layout- this gives the overall dimensions of a structure such as height and width or phase spacing.

5. Enough Time to Bid- it’s important to keep in mind that fabricators typically have a quote backlog already scheduled out. 

Often, in order to send a bid to a fabricator, customers require the fabricator to be on an approved vendor list in order to quote the project.  The approval process usually involves quality assurance / quality control (QA/QC) audit, industry experience, project references, customer references, commercial term agreement, credit approvals, etc. 

5 Facts That Could Affect Pricing:

1. Weathering steel generally costs less because unlike galvanized steel, it doesn’t get the galvanized coating. (Typically see weathering steel more with transmission structures.)

2. Usually, the more steel ordered at one time could help give you a better price. In this instance, if you had different structures for one substation, instead of ordering separately, try to coordinate to order all the structures together, which could save money on freight and other expenses.

3. Loads with over-length and over-width sections could get costly because you have to get freight permitting depending on the states along the delivery route. Typically, the price for wider structures is greater than longer structures.

4. Expedited lead times can increase price. Since a production backlog is already in place, fabricators would need to expedite engineering, detailing, rearrange product schedule or may have to include some overtime.

5. Special weld inspection requirements and tests that are beyond typical industry standards could raise the price. If the fabricator needs to pull in a third party to inspect, send material off for testing or bring in an expert, it could increase the price.

These are just a few suggestions, and are not meant to be taken as the rule in every situation when dealing with every fabricator. But it is good to know how your project was priced and what affected it so that there are no hidden surprises or confusion.   

So remember: supply ample information, receive accurate price. 

New Call to action

New Call-to-action

 

Tags: transmission structures, substation structures, structural steel fabricators, structural steel price, rfq request for quote, engineering estimating software, structural steel

How Do Electrical Transmission and Distribution Systems Work? Find Out.

Posted by Brooke Barone on Aug 9, 2013 9:52:00 AM

A Transmission and Distribution (T&D) System, has a notorious job of delivering electricity to consumers 24/7, 365 days a year.

But before the electricity can travel into your home, it must pass through a substation first. A substation is an assemblage of equipment where electrical energy is passed in order to be stepped up or stepped down.

Transformers inside a substation change the voltage levels between high transmission voltages and lower distribution voltages. The high transmission voltages are used to carry electricity longer distances, like across the country, whereas lower distribution voltages travel to industrial, commercial or residential consumers.

In a T&D system, the major components typically consist of transmission lines, distribution lines, substations and switchyards.

Inside a substation is like its own unique “power world” where every pole, bolt, stand, surge arrestor or structure plays its own individual role.

The three main types of structures found inside a substation include:

1.)    Dead-End Structures

2.)    Static Poles

3.)    Bus Supports/ Equipment Stands

Dead-end Structures are where the line ends or angles off. They are typically constructed with heavier steel in case they are needed to carry heavier tension. The two most common dead-end structures are H-Frame and A-Frame structures.

H-Frame Structure

A-Frame Structure

The second structure, a Static Pole, is a single, free-standing pole that creates a shield to protect all of the equipment inside a substation from lightning. Static poles may or may not have overhead shield wires attached to enhance protection. It depends on the size of the substation as to how many static poles are needed.             

NOTE: Tapered tubular design is typically efficient and economical in dead-end and static pole situations when compared to AISC standard shape structures.

Bus Supports are the most basic structure found inside a substation. Its main purpose is to provide support for rigid bus as it travels though the substation. Rigid bus is stiff and will not move around during weather events. Unlike rigid, flexible bus is typically used in high seismic areas in order to be able to move and dampen the seismic forces that occur. 

Electrical equipment can be of significant weight and must meet specific guidelines for structural loads, deflection limits or clearance requirements.Equipment Stands are the structures that the actual equipment sit on.

Examples of some equipment stands include:

  • Potential Transformers (PT) Stands
  • Current Transformers (CT) Stands
  • Coupling Capacitor Voltage Transformer (CCVT ) Stands
  • Lightning Arresters (LA)
  • Switch Stands

 So, although the concept seems quick and simple like flipping a light switch, much more is going on behind the scenes.  

Transmission lines act as the utility interstate system where electricity is transmitted at high voltages in order to reduce the energy lost in long-distance transmission.

Although it’s hard to quantify structure types since there are always exceptions to the rules and never-ending configurations, transmission structures can be considered dead-end, strain or suspension.

dead-end structure is where conductors and ground wires are pulled only on one side, unless it is a double dead-end structure, and are used where:

•    Line ends
•    Line turns at a large angle
•    At major crossings like highways or rivers
•    Divide line into segments


For strain structures, the conductors are directly attached through in-line insulators through or around the tower. In suspension transmission structures, the conductor phases pass through the structure, and are suspended from the insulator.

Each structure type can either be classified as tangentwith no line angle, or anglewhen there is a line angle.

Steel transmission structures can be designed with tapered tubular poles, which are hollow, can be multi-sided and have a large base that tapers down, typically in the range of .18 to .45” per foot.

And to dig a little deeper, all of these structures can either be guyed or unguyed. A guyed structure provides extra support by fastening a wire from the structure to the ground or another structure, whereas an unguyed structure is self-supporting.

Transmission Structures

When deciding which type of structure is most economical, as well as best suited for varying conditions, there are many considerations that can influence which to select, such as:


•    Terrain type 
•    Erection techniques
•    Electrical constraints
•    Access & transport situation
•    Procurement & easements
•    Structural loading

New Call-to-Action

Tags: steel structures, tapered tubular steel poles, transmission structures, substation structures, tangent, switchyards, dead-end structures, electrical transmission and distribution

Behind the scenes look at Substations and Transmissions

Posted by Brooke Barone on Oct 26, 2012 11:29:00 AM

Turning on a light happens within a blink of an eye. But it’s a little more complicated than just flipping a switch. P1020296 resized 600

Transmission and substations work coinciding with one another in order to bring the electricity from the distribution station, into your home.

Transmission lines move high voltage power across the country, while substations basically take the higher voltage down to lower voltages.  Let’s say a 230kV line comes into a substation, the power is then transformed into a lower voltage, or multiple lower voltages, and then carried out by distribution lines into your home or business.

A good way to remember the difference between the two is to think of transmission lines as interstates or freeways, and distribution lines as smaller state or county highways.

There are three components that make up a transmission line:

  • Conductors
  • Insulators
  • Transmission Structures

Transmission structures are typically taller than substation structures because they carry a higher voltage and require a greater phase separation. Transmission structures can be made with either wood, concrete or steel. Lower transmission voltages are more commonly constructed with wood or concrete, while steel is used for higher voltage structures.

Transmission structures are built in a number of different designs, but the two most common that you will see are tapered tubular poles or lattice structures.  Other transmission structure types include:

  • Dead-end                           
  • Embedded
  • Base-plate
  • Tangent
  • Guyed
  • Unguyed

The transmission lines deliver power to transformers, which are located inside the substation. The substation is where the voltage is either increased or decreased. The power is then carried out by either overhead lines or underground potheads. (A device that connects overhead conductors to underground)

The main structures found in a substation are:

  • Dead-Ends
  • Static Poles
  • Equipment/Bus Supports

The circuits are connected by buses, which connects different  circuits within a substation, providing flexibility.  Buses can be made with either aluminum tubing, copper or other materials.

All electricity travels in three phases, or three separate lines, to make up one circuit. It depends on the voltage as to how far apart each line should be spaced. The higher the voltage, the further apart they should be in order to avoid arcing. If the wires get too close to the metal or any object, it will arc, finding the path of least resistance. This is vital with both transmission and substations.

For FREE Steel Sturcture Design Templates, click on the link below!

New Call to action

 

 

Tags: substations, transmission, tapered tubular steel poles, transmission structures, substation structures, distribution line, high voltage, transmissions

Subscribe to Email Updates

Categories

see all

Recent Posts